Q.
Let A(1,4) and B(1,−5) be two points. Let P be a point on the circle (x−1)2+(y−1)2=1 such that (PA)2+(PB)2 have maximum value, then the points P,A and B lie on :
P be a point on (x−1)2+(y−1)2=1
so P(1+cosθ,1+sinθ) A(1,4)B(1,−5) (PA)2+(PB)2 =(cosθ)2+(sinθ−3)2+(cosθ)2+(sinθ+6)2 =47+6sinθ
is maximum if sinθ=1 ⇒sinθ=1,cosθ=0 P(1,1)A(1,4)B(1,−5) P,A,B are collinear points.