We have, A=⎣⎡12−34−1724−6⎦⎤
and B=⎣⎡b11b21b31b12b22b32b13b23b33⎦⎤=⎣⎡2b21b310b22b32−2b23b33⎦⎤ ∴AB=⎣⎡12−34−1724−6⎦⎤⎣⎡2b21b310b22b32−2b23b33⎦⎤ ⎣⎡2+4b21+2b314−b21+4b31−6+7b21−6b310+4b22+2b320+b22+4b320+7b22−6b32−2+4b23+2b33−4−b23+4b336+7b23−6b33⎦⎤ =⎣⎡24−614115−4−812⎦⎤
On solving above equal matrices with corresponding elements,
we get b21=b31=0,b22=3,b32=1,b23=0 and b33=−1 ∴B=⎣⎡200031−20−1⎦⎤ ∴∣B∣=2(−3−0)+(−2)(0−0)=−6
and Trace (B)=2+3−1=4 ∴∣B∣+ trace (B)=−6+4=−2