Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[ 1 3 2 2 5 &t 4&7-t&-6 ], then the values of t for which inverse of A does not exist
Q. Let A=
⎣
⎡
1
2
4
3
5
7
−
t
2
t
−
6
⎦
⎤
, then the values of t for which inverse of A does not exist
2036
230
VITEEE
VITEEE 2006
Report Error
A
-2, 1
B
3, 2
C
2, -3
D
3, -1
Solution:
We know that inverse of A does not exist
only when |A| = 0
∴
∣
∣
1
2
4
3
5
7
−
t
2
t
−
6
∣
∣
=0
(
−
30
−
7
t
+
t
2
)
−
3
(
−
12
−
4
t
)
+
2
(
14
−
2
t
−
20
)
=
0
⇒
−
30
−
7
t
+
t
2
+
36
+
12
t
−
12
−
4
t
=
0
⇒
t
2
+
t
−
6
=
0
⇒
t
2
+
3
t
−
2
t
−
6
=
0
⇒
t
(
t
+
3
)
−
2
(
t
+
3
)
=
0
⇒
(
t
+
3
)
(
t
−
2
)
=
0
⇒
t
=
2
,
−
3