Given,A=[1−521]
we have A=IA ∴[1−521]=[1001]A
Applying R2→R2+5R1, we get [10211]=[1501]A
Applying R2→111R2, we get [1021]=[11150111]A
Applying R1→R1+2R2, we get [1001]=[111115−112111]A ∴A−1=111[15−21]
Also, A−1=xA+yI ⇒111[15−21]=[x−5x2xx]+[y00y] ⇒111[15−21]=[x+y−5x2xx+y] ⇒x+y=111,2x=−112 ⇒x=−111,y=112