Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A (-1,1), B (3,4) and C (2,0) be given three points. A line y = mx , m >0, intersects lines AC and BC at point P and Q respectively. Let A 1 and A 2 be the areas of Δ ABC and Δ PQC respectively, such that A 1=3 A 2, then the value of m is equal to :
Q. Let
A
(
−
1
,
1
)
,
B
(
3
,
4
)
and
C
(
2
,
0
)
be given three points. A line
y
=
m
x
,
m
>
0
, intersects lines
A
C
and
BC
at point
P
and
Q
respectively. Let
A
1
and
A
2
be the areas of
Δ
A
BC
and
Δ
PQC
respectively, such that
A
1
=
3
A
2
, then the value of
m
is equal to :
4272
246
JEE Main
JEE Main 2021
Straight Lines
Report Error
A
15
4
B
1
C
2
D
3
Solution:
P
≡
(
x
1
,
m
x
1
)
Q
≡
(
x
2
,
m
x
2
)
A
1
=
2
1
∣
∣
3
2
−
1
4
0
1
1
1
1
∣
∣
−
2
13
A
2
=
2
1
∣
∣
x
1
x
2
2
m
x
1
m
x
2
0
1
1
1
∣
∣
A
2
=
2
1
∣
2
(
m
x
1
−
m
x
2
)
∣
−
m
∣
x
1
−
x
2
∣
A
1
=
3
A
2
⇒
2
13
=
3
m
∣
x
1
−
x
2
∣
⇒
∣
x
1
−
x
2
∣
−
6
m
16
A
C
:
x
+
3
y
=
2
BC
:
y
=
4
x
−
8
P
:
x
+
3
y
=
2
&
y
=
m
x
⇒
x
1
=
1
+
3
m
2
Q
:
y
=
4
x
−
8
&
y
=
m
x
⇒
x
2
=
4
−
m
8
∣
x
1
−
x
2
∣
−
∣
∣
1
+
3
m
2
−
4
−
m
8
∣
∣
∣
∣
(
1
+
3
m
)
(
4
−
m
)
−
26
m
∣
∣
=
(
3
m
+
1
)
∣
m
−
4∣
26
m
=
(
3
m
+
1
)
(
4
−
m
)
26
m
∣
x
1
−
x
2
∣
=
6
m
13
(
3
m
+
1
)
(
4
−
m
)
26
m
=
6
m
13
⇒
12
m
2
=
−
(
3
m
+
1
)
(
m
−
4
)
⇒
12
m
2
=
−
(
3
m
2
−
11
m
−
4
)
⇒
15
m
2
−
11
m
−
4
=
0
⇒
15
m
2
−
15
m
+
4
m
−
4
=
0
⇒
(
15
m
+
4
)
(
m
−
1
)
=
0
⇒
m
=
1