Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A-1=[1&2017&2 1&2017&4 1&2018&8]. Then , |2A|-|2A-1| is equal to
Q. Let
A
−
1
=
⎣
⎡
1
1
1
2017
2017
2018
2
4
8
⎦
⎤
. Then ,
∣2
A
∣
−
∣2
A
−
1
∣
is equal to
2060
219
KVPY
KVPY 2017
Report Error
A
3
B
-3
C
12
D
-12
Solution:
Given,
A
−
1
=
⎣
⎡
1
1
1
2017
2017
2018
2
4
8
⎦
⎤
∣
∣
A
−
1
∣
∣
−
⎣
⎡
1
1
1
2017
2017
2018
2
4
8
⎦
⎤
Apply
R
1
→
R
1
−
R
2
∣
∣
A
−
1
∣
∣
=
⎣
⎡
0
1
1
0
2017
2018
−
2
4
8
⎦
⎤
Expand along
R
1
∣
∣
A
−
1
∣
∣
=
−
2
(
2018
−
2017
)
=
−
2
A
A
−
1
=
1
∣
A
∣
∣
∣
A
−
1
∣
∣
=
1
∣
A
∣
=
∣
A
−
1
∣
2
1
=
−
2
1
Now,
∣
2
A
∣
−
∣
∣
2
A
−
1
∣
∣
=
8
∣
A
∣
−
8
∣
∣
A
−
1
∣
∣
=
8
[
2
−
1
+
2
]
=
12