Q.
Let A(−1,0) and B(2,0) be two points on the x-axis. A point ' M ' is moving in xy-plane (other than x-axis) in such a way that ∠MBA=2∠MAB, then the point ' M ' moves along a conic whose
Given, θ=2ϕ⇒tanθ=tan2ϕ ⇒tanθ=1−tan2ϕ2tanϕ⇒x0−2−y0=(x0+1)2−y022y0(x0+1)⇒x0−2−1=(x0+1)2−y022(x0+1) ⇒3x02−y02=3 ∴ Locus of M is hyperbola 3x2−y2=3 Now, verify alternatives.