Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A= [0 - tan θ / 2 tan θ / 2 0](θ ≠ n π) B= [ cos θ - sin θ sin θ cos θ], I= [1 0 0 1] Then the matrix I+A is equal to
Q. Let
A
=
[
0
tan
θ
/2
−
tan
θ
/2
0
]
(
θ
=
nπ
)
B
=
[
cos
θ
sin
θ
−
sin
θ
cos
θ
]
,
I
=
[
1
0
0
1
]
Then the matrix
I
+
A
is equal to
2937
230
Matrices
Report Error
A
(
I
−
A
)
B
B
(
I
−
A
)
2
B
C
(
I
+
A
)
2
B
D
(
I
−
A
)
2
Solution:
Put
tan
(
θ
/2
)
=
a
so that
B
=
[
1
+
a
2
1
−
a
2
1
+
a
2
2
a
1
+
a
2
−
2
a
1
+
a
2
1
−
a
2
]
∴
(
I
−
A
)
B
=
[
1
−
a
a
1
]
[
1
+
a
2
1
−
a
2
1
+
a
2
2
a
1
+
a
2
−
2
a
1
+
a
2
1
−
a
2
]
=
⎣
⎡
1
+
a
2
1
−
a
2
+
1
+
a
2
−
2
a
2
1
+
a
2
−
a
(
1
−
a
2
)
+
1
+
a
2
2
a
1
+
a
2
−
2
a
+
1
+
a
2
a
(
1
−
a
2
)
1
+
a
2
2
a
2
+
1
+
a
2
1
−
a
2
⎦
⎤
=
[
1
a
−
a
1
]
=
I
+
A