Given z=1−2isinθ3+2isinθ is purely img
so real part becomes zero. z=(1−2isinθ3+2isinθ)×(1+2isinθ1+2isinθ) z=i+4sin2θ(3−4sin2θ)+i(8sinθ)
Now Re(z) = 0 1+4sin2θ3−4sin2θ=0 sin2θ=43sinθ=±23⇒θ=−3π,3π,32π ∵θ∈(−2π,π)
then sum of the elements in A is −3π+3π+32π=32π