Q.
Let a>0,b>0 and f(x)=∣∣xbbaxbaax∣∣, then which of the following statement is true?
1430
170
J & K CETJ & K CET 2012Application of Derivatives
Report Error
Solution:
Given, f(x)=∣∣xbbaxbaax∣∣ =x(x2−ab)−a(bx−ab)+a(b2−bx) ⇒f(x)=x3−3abx+a2b+ab2
On differentiating w. r. t. x, we get f′(x)=3x2−3ab
Put f′(x)=0,3x2−3ab=0 ⇒x=±ab
Now, f′′(x)=9x
At x=ab, f′′(x)=9ab>0, (minima)
Hence, f(x) has a local minimum at x=ab.