Q.
Let 2x+ay+6z=8 , x+2y+bz=5 and x+y+3z=4 be three equations. If these 3 equations are consistent, then
3156
232
NTA AbhyasNTA Abhyas 2020Matrices
Report Error
Solution:
From Cramer’s rule,
for consistent system △=△1=△2=△3=0 △=∣∣211a216b3∣∣=2(6−b)−a(3−b)+6(1−2) =12−2b−3a+ab−6 =6−2b−3a+ab =(a−2)(b−3) (△)1=∣∣854a216b3∣∣=8(6−b)−a(15−4b)+6(5−8) =48−8b−15a+4ab−18 =30−15a−8b+4ab =(4b−15)(a−2) (△)2=∣∣2118546b3∣∣=2(15−4b)−8(3−b)+6(4−5) =30−8b−24+8b−6=0 (△)3=∣∣211a21854∣∣=2(8−5)−a(4−5)+8(1−2)=a−2
For consistent system a=2