Given (2x2+3x+4)10=r=0∑20arxr… (1)
replace x by x2 in above identity : x20210(2x2+3x+4)10 =r=0∑20xrar2r ⇒210r=0∑20arxr =r=0∑20ar2rx(20−r)( from (i))
now, comparing coefficient of x7 from both sides
(take r=7 in L.H.S. &r=13 in R.H.S. 210a7=a13213 ⇒a13a7=23=8