Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let (1 + x)n = Co + C1x + C2x2 +........ + Cnxn and (C1 /C0)+ (2.C2 /C1) + (3.C3 /C2) + ....+ (nCn/Cn-1) =n (n+1 /K ) The value of K is
Q. Let
(
1
+
x
)
n
=
C
o
+
C
1
x
+
C
2
x
2
+
........
+
C
n
x
n
and
C
0
C
1
+
C
1
2.
C
2
+
C
2
3.
C
3
+
....
+
C
n
−
1
n
C
n
=
n
K
n
+
1
The value of K is
4689
197
Binomial Theorem
Report Error
A
2
1
25%
B
2
75%
C
3
1
0%
D
3
0%
Solution:
C
0
C
1
+
2
C
1
C
2
+
3
C
2
C
3
+
....
C
n
−
1
n
C
n
=
1
n
+
2
n
2
n
(
n
−
1
)
+
3
2
!
n
(
n
−
1
)
3
!
n
(
n
−
1
)
(
n
−
2
)
+
...
+
n
n
⋅
1
=
n
+
(
n
−
1
)
+
(
n
−
2
)
+
....
+
1
=
2
n
(
n
+
1
)
∴
K
=
2
.