Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Ι1=∫ limits01 (| ln x|/x2 + 4 x + 1) d x and Ι2=∫ limits 1∞( ln x/x2 + 4 x + 1)dx, then
Q. Let
I
1
​
=
0
∫
1
​
x
2
+
4
x
+
1
∣
l
n
x
∣
​
d
x
and
I
2
​
=
1
∫
∞
​
x
2
+
4
x
+
1
l
n
x
​
d
x
,
then
141
149
NTA Abhyas
NTA Abhyas 2022
Report Error
A
I
1
​
=
I
2
​
B
I
1
​
>
I
2
​
C
I
1
​
+
I
2
​
=
0
D
I
1
​
=
2
I
2
​
Solution:
ln
I
2
​
substitute
x
=
t
1
​
⇒
d
x
=
−
t
2
d
t
​
So,
I
2
​
=
−
1
∫
0
​
t
2
+
4
t
+
1
l
n
t
​
â‹…
t
2
(
t
2
−
d
t
​
)
=
0
∫
1
​
t
2
+
4
t
+
1
(
−
l
n
t
)
​
d
t
=
I
1
​
{
as
∣
ln
t
∣
=
−
ln
t
in
(
0
,
1
)}