(1+2x)20=a0+a1x+a2x2+…+a20x20
Put x=1 320=a0+a1+a2+…+a20 ...(i)
Put x=−1, 1=a0−a1+a2−a3+…+a20 ...(ii)
On adding Eqs. (i) and (ii), we get 2320+1=a0+a2+a4+…+a20
On subtracting Eq. (ii) from Eq. (i), we get 2320−1=a1+a3+a5+…+a19
Now, we have 3a0+2a1+3a2+2a3+…+2a19+3a20 =3(a0+a2+a4+…+a20)+2(a1+a3+…+a19) =3(2320+1)+2(2320−1) =25⋅320+1