Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let (1+√2)n=xn+yn √2 where xn, yn are integers, then :
Q. Let
(
1
+
2
)
n
=
x
n
+
y
n
2
where
x
n
,
y
n
are integers, then :
325
147
JEE Advanced
JEE Advanced 2018
Report Error
A
x
n
2
−
2
y
n
2
=
(
−
1
)
n
96%
B
x
n
+
2
y
n
−
x
n
+
1
=
0
139%
C
x
n
2
−
2
y
n
2
=
1
0%
D
y
n
+
1
=
x
n
+
y
n
209%
Solution:
We have
(
1
+
2
)
n
=
x
n
+
y
n
2
...(i)
(
1
−
2
)
n
=
x
n
−
y
n
2
....(i)
From (i) and (ii) we get :
(
1
+
2
)
n
(
1
−
2
)
n
=
x
n
2
−
2
y
n
2
⇒
(
−
1
)
n
=
x
n
2
−
2
y
n
2
Next,
x
n
+
1
+
y
n
+
1
2
=
(
1
+
2
)
n
+
1
=
(
1
+
2
)
(
x
n
+
2
y
n
)
=
(
x
n
+
2
y
n
)
+
2
(
x
n
+
y
n
)
Thus,
x
n
+
1
=
x
n
+
2
y
n
or
x
n
+
1
−
x
n
−
2
y
n
=
0