Q.
Let 0<x<π and y(x) be given by (1+sinx)y3−(cosx)y2+2(1+sinx)y−2cosx=0
The derivative of y with respect to tan2x at x=2π is :
1684
239
Continuity and Differentiability
Report Error
Solution:
The given eq. can be written as (y2+2)(y−1+sinxcosx)=0⇒y=1+sinxcosx =1+1+tan22x2tan2x1+tan22x1−tan22x=1+t2+2t1−t2=(1+t)2(1−t)(1+t)=1+t1−t=1+t2−1
where t=tan2x⇒y′(t)=(1+t)2−2⋅ At x=2π,t=1 ∴y′(1)=(1+1)2−2=−21