Given equation is (1+sinx)y3−(cosx)y2+2(1+sinx)y−2cosx=0 Put x=2π, we get (1+sin2π)y2−(cos2π)y2+2(1+sin2π)y−2cos2π=0 ⇒2y3+4y=0⇒y=0,±2i. Let 2x=t ∴(1+sin2t)y3−(cos2t)y2+2(1+sin2t)y−2cos2t=0
On differentiating w.r.t.t, we get 3y2dtdy(1+sin2t)+2y3(cos2t)−2ydtdy(cos2t)+2y2sin2t+2dtdy(1+sin2t)+2y(2cos2t)+4sin2t=0 when 2t=2π,y=0,2dtdy(1+1)+4=0 ⇒dtdy=−1 ⇒2dxdy=−1 ⇒dxdy=−2