Q.
Length of an elastic string is x metre when longitudinal tension is 3N and y metre when it is 5N. If length of string is found to be 2.5y−1.5x, calculate tension in the string in N.
540
164
Mechanical Properties of Solids
Report Error
Answer: 8
Solution:
Let L be original length of string and k be force constant of string.
New final length = initial length + elongation L′=L+KF
When tension of 3N is applied, x=L+k3.... (i)
When tension of 5N is applied, y=L+k5....(ii)
Subtracting equation (ii) from (i), x−y=k3−k5 ∴k=x−y−2=y−x2
Substituting value of k in equation (i), x=L+2/y−x3=L+23(y−x) ∴L=x−23(y−x) =22x−3y+3x=25x−3y
Let T be tension when length is 2.5y−1.5x ∴2.5y−1.5x=L+kT 2.5y−1.5x=25x−3y+(2/y−x)T 2.5y−1.5x=25x−3y+2(y−x)T ∴5y−3x=5x−3y+(y−x)T ∴8y−8x=(y−x)T ∴8(y−x)=(y−x)T ⇒T=8N