Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Le t D1=|a&b&a+b c&b&c+d a&b&a-b| and D2=|a&c&a+c b&d&b+d a&c&a+b+c| then the value of D1 / D2 is, where b ≠ 0 and a d ≠ b c .
Q. Le t
D
1
=
∣
∣
a
c
a
b
b
b
a
+
b
c
+
d
a
−
b
∣
∣
and
D
2
=
∣
∣
a
b
a
c
d
c
a
+
c
b
+
d
a
+
b
+
c
∣
∣
then the value of
D
1
/
D
2
is, where
b
=
0
and
a
d
=
b
c
___.
1490
218
Determinants
Report Error
Answer:
-2
Solution:
Using:
C
3
→
C
3
−
(
C
1
+
C
2
)
in
D
1
and
D
2
,
we have
∴
D
2
D
1
=
b
(
a
d
−
b
c
)
−
2
b
(
a
d
−
b
c
)
=
−
2