Q.
Let L=limx→0x4a−a2−x2−4x2,a>0. If L is finite, then
3661
187
IIT JEEIIT JEE 2009Limits and Derivatives
Report Error
Solution:
L = limx→0x4a−a2−x2−4x2,a>0
= limx→0x4a−a[1−21.a2x2+221(21−1).a4x4−.....]−4x2
= limx→0x42ax2+81.a3x4+....−4x2
Since, L is finite ⇒2a=4⇒⇒a=2 L = limx→08.a31=641 .