Let, A=[cos2θsin2θ−sin2θcos2θ]
And A−1=∣A∣AdjA
Here ∣A∣=cos22θ−(−sin22θ) =cos22θ+sin22θ =1(∵sin2θ+cos2θ=1)
And , AdjA=∣∣A11A21A12A22∣∣
Where, A11 = cofactor
and , A11=(−1)1+.cos2θ=cos2θ A12=(−1)1+2.sin2θ=−sin2θ A21=(−1)2+1.(−sin2θ)=+sin2θ A22=(−1)2+2cos2θ=cos2θ
Hence, Adj A=[cos2θsin2θ−sin2θcos2θ]T
Where 'T' denotes the transpose of the matrix. And the transpose of the matrix is obtained by interchanging the rows and columns of the given matrix.
Thus, Adj (A)=[cos2θ−sin2θsin2θcos2θ] ⇒A−1=[cos2θ−sin2θsin2θcos2θ]