Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Inverse of the matrix [ cos 2 θ - sin 2 θ sin 2 θ cos 2 θ] is
Q. Inverse of the matrix
[
cos
2
θ
sin
2
θ
−
sin
2
θ
cos
2
θ
]
is
1995
176
Determinants
Report Error
A
[
cos
2
θ
sin
2
θ
−
sin
2
θ
cos
2
θ
]
7%
B
[
cos
2
θ
sin
2
θ
sin
2
θ
−
cos
2
θ
]
16%
C
[
cos
2
θ
sin
2
θ
sin
2
θ
cos
2
θ
]
11%
D
[
cos
2
θ
−
sin
2
θ
sin
2
θ
cos
2
θ
]
67%
Solution:
Let,
A
=
[
cos
2
θ
<
b
r
/
><
b
r
/
>
s
in
2
θ
−
s
in
2
θ
cos
2
θ
]
And
A
−
1
=
∣
A
∣
A
d
j
.
A
Here
∣
A
∣
=
co
s
2
2
θ
−
(
−
sin
2
2
θ
)
=
cos
2
2
θ
+
sin
2
2
θ
=
1
(
∵
sin
2
θ
+
cos
2
θ
=
1
)
And, Adj
A
=
[
A
11
A
21
A
12
A
22
<
b
r
/
><
b
r
/
>
]
Where,
A
11
cofactor
and,
A
11
=
(
−
1
)
i
+
i
⋅
cos
2
θ
=
cos
2
θ
A
12
=
(
−
1
)
1
+
2
⋅
sin
2
θ
=
−
sin
2
θ
A
21
=
(
−
1
)
2
+
1
⋅
(
−
sin
2
θ
)
=
+
sin
2
θ
A
22
=
(
−
1
)
2
+
2
cos
20
=
cos
20
Hence, Adj A
=
[
cc
cos
2
θ
sin
2
θ
−
sin
2
θ
cos
2
θ
]
T
Thus, Adj ( A )
=
[
cos
2
θ
−
sin
2
θ
sin
2
θ
cos
2
θ
]
⇒
A
−
1
=
[
cos
2
θ
−
sin
2
θ
sin
2
θ
cos
2
θ
]