Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫((x-a/x)-(x/x+a)) dx is equal to
Q.
∫
(
x
x
−
a
−
x
+
a
x
)
d
x
is equal to
2342
237
KEAM
KEAM 2016
Integrals
Report Error
A
lo
g
∣
∣
x
x
+
a
∣
∣
+
C
17%
B
a
lo
g
∣
∣
x
x
+
a
∣
∣
+
C
32%
C
a
lo
g
∣
∣
x
+
a
x
∣
∣
+
C
18%
D
lo
g
∣
∣
x
+
a
x
∣
∣
+
C
18%
E
a
lo
g
∣
∣
x
+
a
x
−
a
∣
∣
+
C
18%
Solution:
Let
I
=
∫
(
x
x
−
a
−
x
+
a
x
)
d
x
=
∫
x
(
x
+
a
)
(
x
2
−
a
2
)
−
x
2
d
x
=
−
a
2
∫
x
(
x
+
a
)
1
d
x
=
a
−
a
2
∫
[
x
1
−
x
+
a
1
]
d
x
=
−
a
lo
g
∣
∣
x
+
a
x
∣
∣
+
C
=
a
lo
g
∣
∣
x
x
+
a
∣
∣
+
C