Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ((x3+3x2+3x+1) /(x+1)5) dx =
Q.
∫
(
x
+
1
)
5
(
x
3
+
3
x
2
+
3
x
+
1
)
d
x
=
3169
194
KCET
KCET 2006
Integrals
Report Error
A
T
a
n
−
1
x
+
c
15%
B
L
o
g
(
x
+
1
)
+
c
21%
C
5
1
L
o
g
(
x
+
1
)
+
c
31%
D
−
(
x
+
1
)
1
+
c
34%
Solution:
Let
I
=
∫
(
x
+
1
)
5
(
x
3
+
3
x
2
+
3
x
+
1
)
d
x
=
∫
(
x
+
1
)
5
(
x
+
1
)
3
d
x
=
∫
(
x
+
1
)
2
1
d
x
=
−
(
x
+
1
)
1
+
c