Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫(x2 dx/(a+bx)2) equals
Q.
∫
(
a
+
b
x
)
2
x
2
d
x
equals
1741
199
Integrals
Report Error
A
b
2
1
[
x
+
b
2
a
l
o
g
∣
(
a
+
b
x
)
∣
−
b
a
2
(
a
+
b
x
)
1
]
+
c
B
b
2
1
[
x
−
b
2
a
l
o
g
∣
(
a
+
b
x
)
∣
+
b
a
2
(
a
+
b
x
)
1
]
+
c
C
b
2
1
[
x
+
b
a
−
b
2
a
l
o
g
∣
(
a
+
b
x
)
∣
−
b
a
2
(
a
+
b
x
)
1
]
+
c
D
b
2
1
[
x
+
b
a
+
b
2
a
l
o
g
∣
(
a
+
b
x
)
∣
+
b
a
2
(
a
+
b
x
)
1
]
+
c
Solution:
Correct answer is (c)
b
2
1
[
x
+
b
a
−
b
2
a
l
o
g
∣
(
a
+
b
x
)
∣
−
b
a
2
(
a
+
b
x
)
1
]
+
c