Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ x2(ax + b)-2 dx is equal to
Q.
∫
x
2
(
a
x
+
b
)
−
2
d
x
is equal to
4718
231
Integrals
Report Error
A
a
2
2
(
x
−
a
b
l
o
g
(
a
x
+
b
)
)
+
C
18%
B
a
2
2
(
x
−
a
b
l
o
g
(
a
x
+
b
)
)
−
a
(
a
x
+
b
)
x
2
+
C
31%
C
a
2
2
(
x
+
a
b
l
o
g
(
a
x
+
b
)
)
+
a
(
a
x
+
b
)
x
2
+
C
35%
D
a
2
2
(
x
+
a
b
l
o
g
(
a
x
+
b
)
)
−
a
(
a
x
+
b
)
x
2
+
C
17%
Solution:
I
=
∫
(
a
x
+
b
)
2
x
2
d
x
Put
a
x
+
b
=
t
⇒
d
x
=
a
1
d
t
∴
I
=
a
3
1
∫
t
2
(
t
−
b
)
2
d
t
=
a
3
1
∫
(
1
+
t
2
b
2
−
t
2
b
)
d
t
=
a
3
1
(
t
−
t
b
2
−
2
b
l
o
g
t
)
+
C
a
3
1
(
a
x
+
b
−
a
x
+
b
b
2
−
2
b
l
o
g
(
a
x
+
b
)
)
+
C
=
a
2
2
(
x
−
a
b
l
o
g
(
a
x
+
b
)
)
−
a
(
a
x
+
b
)
x
2
+
C