Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ (x2-1/x4+3x2+1) dx(x>0) is
Q.
∫
x
4
+
3
x
2
+
1
x
2
−
1
d
x
(
x
>
0
)
is
5565
197
WBJEE
WBJEE 2017
Integrals
Report Error
A
tan
−
1
(
x
+
x
1
)
+
C
50%
B
tan
−
1
(
x
−
x
1
)
+
C
20%
C
lo
g
e
∣
x
+
x
1
+
1
x
+
x
1
−
1
∣
+
C
22%
D
lo
g
e
∣
x
−
x
1
+
1
x
−
x
1
−
1
∣
+
C
8%
Solution:
Let
I
=
∫
x
4
+
3
x
2
+
1
x
2
−
1
d
x
=
∫
x
2
+
3
+
1/
x
2
1
−
1/
x
2
d
x
=
∫
(
x
2
+
x
2
1
)
+
3
1
−
1/
x
2
d
x
=
∫
(
x
+
x
1
)
2
−
2
+
3
1
−
1/
x
2
d
x
=
∫
(
x
+
x
1
)
2
+
1
1
−
1/
x
2
d
x
Let
x
+
x
1
=
t
⇒
(
1
−
x
2
1
)
d
x
=
d
t
∴
I
=
∫
t
2
+
1
d
t
=
tan
−
1
t
+
C
=
tan
−
1
(
x
+
x
1
)
+
C
[
∵
t
=
x
+
x
1
]