Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ( tan ((π/4)-x)/ cos 2 x √ tan 3 x+ tan 2 x+ tan x) d x is equal to
Q.
∫
c
o
s
2
x
t
a
n
3
x
+
t
a
n
2
x
+
t
a
n
x
t
a
n
(
4
π
−
x
)
d
x
is equal to
107
122
Integrals
Report Error
A
−
2
tan
−
1
tan
x
+
1
+
t
a
n
x
1
+
C
57%
B
2
tan
−
1
tan
x
+
1
+
t
a
n
x
1
+
C
20%
C
−
3
tan
−
1
tan
x
+
1
+
t
a
n
x
1
+
C
7%
D
3
tan
−
1
tan
x
+
1
+
t
a
n
x
1
+
C
(where
C
is constant of integration.)
16%
Solution:
Let
tan
x
=
t
∴
I
=
∫
(
1
+
t
)
t
3
+
t
2
+
t
(
1
−
t
)
d
t
=
∫
(
1
+
t
2
+
2
t
)
t
3
+
t
2
+
t
(
1
−
t
2
)
d
t
=
∫
(
t
+
2
+
t
1
)
t
+
1
+
t
1
(
t
2
1
−
1
)
d
t
Let
t
+
1
+
t
1
=
u
2
=
−
∫
(
u
2
+
1
)
u
2
u
d
u
=
−
2
tan
−
1
t
+
1
+
t
1
+
C