Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ tan-1 √x dx is equal to
Q.
∫
t
a
n
−
1
x
d
x
is equal to
11235
248
Integrals
Report Error
A
(
x
+
1
)
t
a
n
−
1
x
−
x
+
C
32%
B
x
t
a
n
−
1
x
−
x
+
C
28%
C
x
−
x
t
a
n
−
1
x
+
C
24%
D
x
−
(
x
+
1
)
t
a
n
−
1
x
+
C
16%
Solution:
We have,
I
=
∫
1
⋅
t
a
n
−
1
x
d
x
⇒
I
=
t
a
n
−
1
x
⋅
(
x
)
−
∫
1
+
x
1
×
2
x
1
×
x
d
x
=
x
t
a
n
−
1
x
−
∫
(
1
+
x
)
2
x
x
d
x
=
x
t
a
n
−
1
x
−
∫
(
(
1
+
x
)
2
x
1
+
x
−
(
1
+
x
)
2
x
1
)
d
x
=
x
t
a
n
−
1
x
−
∫
2
x
d
x
+
∫
2
x
(
1
+
x
)
d
x
=
x
t
a
n
−
1
x
−
x
+
t
a
n
−
1
x
+
C
=
(
x
+
1
)
t
a
n
−
1
x
−
x
+
C