We have, I=∫sin22x(sinx+cosx)(2−sin2x)dx
Put sinx−cosx=t⇒(sinx+cosx)dx=dt
and (sinx−cosx)2=t2⇒1−sin2x=t2 ⇒sin2x=1−t2 ∴I=∫(1−t2)2(2−(1−t2))dt ⇒I=∫(1−t2)2(1+t2)dt ⇒I−∫1−2t2+t41+t2dt ⇒I=∫t21+t2−21+1/t2dt ⇒I=∫(t−t1)21+t21dt
Put t−t1−y⇒(1+t21)dt−dy ∴I=∫y2dy=−y1+C ⇒I=t−t1−1+C ⇒I=1−t2t+C ⇒I=sin2xsinx−cosx+C