Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫(( sin θ + cos θ )/√ sin 2θ )dθ is equal to:
Q.
∫
s
i
n
2
θ
(
s
i
n
θ
+
c
o
s
θ
)
d
θ
is equal to:
2004
218
KEAM
KEAM 2005
Report Error
A
lo
g
∣
cos
θ
−
sin
θ
+
sin
2
θ
∣
+
c
B
lo
g
∣
sin
θ
−
cos
θ
+
sin
2
θ
∣
+
c
C
sin
−
1
(
sin
θ
−
cos
θ
)
+
c
D
sin
−
1
(
sin
θ
+
cos
θ
)
+
c
E
sin
−
1
(
cos
θ
−
sin
θ
)
+
c
Solution:
Let
I
=
∫
1
+
s
i
n
2
θ
−
1
s
i
n
θ
+
c
o
s
θ
d
θ
=
∫
1
−
(
s
i
n
θ
−
c
o
s
θ
)
2
s
i
n
θ
+
c
o
s
θ
d
θ
Let
sin
θ
−
cos
θ
=
t
⇒
(
cos
θ
+
sin
θ
)
d
θ
=
d
t
∴
I
=
∫
1
−
t
2
1
d
t
=
sin
−
1
(
sin
θ
−
cos
θ
)
+
c