Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{\frac{(\sin \theta +\cos \theta )}{\sqrt{\sin 2\theta }}}d\theta $ is equal to:

KEAMKEAM 2005

Solution:

Let $ I=\int{\frac{\sin \theta +\cos \theta }{\sqrt{1+\sin 2\theta -1}}d\theta } $
$ =\int{\frac{\sin \theta +\cos \theta }{\sqrt{1-{{(\sin \theta -\cos \theta )}^{2}}}}d\theta } $
Let $ \sin \theta -\cos \theta =t $
$ \Rightarrow $ $ (\cos \theta +\sin \theta )d\theta =dt $
$ \therefore $ $ I=\int{\frac{1}{\sqrt{1-{{t}^{2}}}}}dt={{\sin }^{-1}}(\sin \theta -\cos \theta )+c $