Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ( sin 8 x- cos 8 x/1-2 sin 2 x cos 2 x) d x is equal to
Q.
∫
1
−
2
s
i
n
2
x
c
o
s
2
x
s
i
n
8
x
−
c
o
s
8
x
d
x
is equal to
2121
224
Integrals
Report Error
A
2
1
sin
2
x
+
C
16%
B
−
2
1
sin
2
x
+
C
61%
C
−
2
1
sin
x
+
C
18%
D
−
sin
2
x
+
C
6%
Solution:
I
=
∫
1
−
2
s
i
n
2
x
c
o
s
2
x
s
i
n
8
x
−
c
o
s
8
x
d
x
=
∫
1
−
2
s
i
n
2
x
c
o
s
2
x
(
s
i
n
4
x
−
c
o
s
4
x
)
(
s
i
n
4
x
+
c
o
s
4
x
)
d
x
=
∫
1
−
2
s
i
n
2
x
c
o
s
2
x
(
s
i
n
2
x
−
c
o
s
2
x
)
(
s
i
n
2
x
+
c
o
s
2
x
)
(
s
i
n
4
x
+
c
o
s
4
x
)
d
x
1.
(
sin
2
x
−
cos
2
x
)
[
(
sin
2
x
+
cos
2
x
)
2
=
∫
1
−
2
s
i
n
2
x
c
o
s
2
x
−
2
s
i
n
2
x
c
o
s
2
x
]
=
∫
1
−
2
s
i
n
2
x
c
o
s
2
x
(
s
i
n
2
x
−
c
o
s
2
x
)
(
1
−
2
s
i
n
2
x
c
o
s
2
x
)
d
x
=
−
∫
cos
2
x
d
x
=
−
2
1
sin
2
x
+
C