Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫( sin 6x+ cos 6x+3 sin 2x cos 2x)dx is equal to
Q.
∫
(
sin
6
x
+
cos
6
x
+
3
sin
2
x
cos
2
x
)
d
x
is equal to
5571
190
KEAM
KEAM 2007
Integrals
Report Error
A
x
+
c
32%
B
2
3
sin
2
x
+
c
15%
C
−
2
3
cos
2
x
+
c
14%
D
3
1
sin
3
x
−
cos
3
x
+
c
25%
E
3
1
sin
3
x
+
cos
3
x
+
c
25%
Solution:
Let
I
=
∫
(
sin
6
x
+
cos
6
x
+
3
sin
2
x
cos
2
x
)
d
x
=
∫
{
(
sin
2
x
)
3
+
(
cos
2
x
)
3
+
3
sin
2
x
cos
2
x
}
d
x
}
=
∫
[
(
sin
2
x
+
cos
2
x
)
(
sin
4
x
+
cos
4
x
−
sin
2
x
cos
2
x
)
+
3
sin
2
x
cos
2
x
]
d
x
=
∫
[
(
sin
2
x
+
cos
2
x
)
2
−
3
sin
2
x
cos
2
x
+
3
sin
2
x
cos
2
x
]
d
x
=
∫
1
d
x
=
x
+
c