Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \int{({{\sin }^{6}}x+{{\cos }^{6}}x+3{{\sin }^{2}}x \,{{\cos }^{2}}x)}dx $ is equal to

KEAMKEAM 2007Integrals

Solution:

Let $ I=\int{({{\sin }^{6}}x+{{\cos }^{6}}x+3{{\sin }^{2}}x{{\cos }^{2}}x)}dx $
$=\int{\{{{({{\sin }^{2}}x)}^{3}}+{{({{\cos }^{2}}x)}^{3}}} $ $ +3{{\sin }^{2}}x{{\cos }^{2}}x\}dx\} $
$=\int{\left[ \begin{align} & ({{\sin }^{2}}x+{{\cos }^{2}}x)({{\sin }^{4}}x+{{\cos }^{4}}x \\ & -{{\sin }^{2}}x{{\cos }^{2}}x)+3{{\sin }^{2}}x{{\cos }^{2}}x \\ \end{align} \right]}dx $
$=\int{\left[ \begin{align} & {{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-3{{\sin }^{2}}x{{\cos }^{2}}x \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+3{{\sin }^{2}}x{{\cos }^{2}}x \\ \end{align} \right]}dx $
$=\int{1\,dx}$
$ = x+c $