Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ( sin 2 x+ sin 4 x- sin 6 x/1+ cos 2 x+ cos 4 x+ cos 6 x) d x is equal to (where C is indefinite integration constant.)
Q.
∫
1
+
c
o
s
2
x
+
c
o
s
4
x
+
c
o
s
6
x
s
i
n
2
x
+
s
i
n
4
x
−
s
i
n
6
x
d
x
is equal to (where
C
is indefinite integration constant.)
707
149
Integrals
Report Error
A
3
1
ln
∣
sec
3
x
∣
+
2
1
ln
∣
sec
2
x
∣
+
ln
∣
sec
x
∣
+
C
9%
B
3
1
ln
∣
sec
3
x
∣
−
2
1
ln
∣
sec
2
x
∣
−
ln
∣
sec
x
∣
+
C
32%
C
C
−
3
1
ln
∣
sec
3
x
∣
+
2
1
ln
∣
sec
2
x
∣
+
ln
∣
sec
x
∣
14%
D
C
−
3
1
ln
∣
sec
3
x
∣
−
2
1
ln
∣
sec
2
x
∣
−
ln
∣
sec
x
∣
45%
Solution:
I
=
∫
1
+
c
o
s
2
x
+
c
o
s
4
x
+
c
o
s
6
x
s
i
n
2
x
+
s
i
n
4
x
−
s
i
n
6
x
d
x
=
∫
2
c
o
s
2
x
+
2
c
o
s
x
c
o
s
5
x
2
s
i
n
3
x
c
o
s
x
−
2
s
i
n
3
x
c
o
s
3
x
d
x
=
∫
c
o
s
x
(
c
o
s
x
+
c
o
s
5
x
)
s
i
n
3
x
(
c
o
s
x
−
c
o
s
3
x
)
d
x
=
∫
2
c
o
s
x
c
o
s
2
x
c
o
s
3
x
2
s
i
n
3
x
s
i
n
2
x
s
i
n
x
d
x
=
∫
tan
x
tan
2
x
tan
3
x
d
x
Θ3
x
=
2
x
+
x
⇒
tan
3
x
=
1
−
t
a
n
2
x
t
a
n
x
t
a
n
2
x
+
t
a
n
x
⇒
tan
3
x
−
tan
3
x
tan
2
x
tan
x
=
tan
2
x
+
tan
x
⇒
tan
3
x
tan
2
x
tan
x
=
tan
3
x
−
tan
2
x
−
tan
x
∴
I
=
∫
(
tan
3
x
−
tan
2
x
−
tan
x
)
d
x
=
3
1
ln
∣
sec
3
x
∣
−
2
1
ln
∣
sec
2
x
∣
−
ln
∣
sec
x
∣
+
C