Let I=∫sin−1{4x2+8x+132x+2}dx ⇒I=∫sin−1{4x2+8x+4+92x+2}dx ⇒I=∫sin−1{(2x+2)2+322x+2}dx
Substituting 2x+2=3tanθ ⇒2dx=3sec2θdθ, we get I=∫sin−1{3secθ3tanθ}.23sec2θdθ ⇒I=23∫sin−1(sinθ).sec2θdθ ⇒I=23∫θsec2θdθ ⇒I=23[θtanθ−∫tanθdθ]
(integrating by parts) I=23[θtanθ−log∣secθ∣]+c =23[tan−1(32x+2).(32x+2)=log1+(32x+2)2]+c =(x+1)tan−1(32x+2)−43log(94x2+8x+13)+c