Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral ∫ limits (π/2)-(π/2) ( x2 + log (π - x / π + x ) ) cos x dx
Q. The value of the integral
−
2
π
∫
2
π
(
x
2
+
lo
g
π
+
x
π
−
x
)
cos
x
d
x
2588
210
IIT JEE
IIT JEE 2012
Integrals
Report Error
A
0
26%
B
2
π
2
−
4
31%
C
2
π
2
+
4
29%
D
2
π
2
14%
Solution:
I
=
−
π
/2
∫
π
/2
[
x
2
+
lo
g
(
π
+
x
π
−
x
)
]
cos
x
d
x
As,
−
a
∫
a
f
(
x
)
d
x
=
0
, when
f
(
−
x
)
=
−
f
(
x
)
∴
I
=
−
π
/2
∫
π
/2
x
2
cos
x
d
x
+
0
=
2
0
∫
π
/2
(
x
2
cos
x
)
d
x
=
2
{
(
x
2
sin
x
)
0
π
/2
−
0
∫
π
/2
2
x
⋅
sin
x
d
x
}
=
2
[
4
π
2
−
2
{
(
−
x
⋅
cos
x
)
0
π
/2
−
0
∫
π
/2
1
⋅
(
−
cos
x
)
d
x
}
]
=
2
[
4
π
2
−
2
(
sin
x
)
0
π
/2
]
=
2
[
4
π
2
−
2
]
=
(
2
π
2
−
4
)