<br/><br/> Let I=∫0π/2(logtanx)⋅sin2xdx…(i)<br/><br/>
Let I=∫0π/2(logtanx)⋅sin2xdx…(i)I=∫0π/2logtan(2π−x)sin2(2π−x)dx[∵∫0af(x)dx=∫0af(a−x)dx]I=∫0π/2logcotx⋅sin2xdx…(ii)[∵sin(π−2x)=sin2x] On adding eqs (i) and (ii), we get 2I∫0π/2logtanx⋅sin2xdx+∫0π/2logcotxsin2xdx=∫0π/2sin2log(tan⋅cotx)dx[∵logm+logn=log(m⋅n)]=∫0π/2sin2xlog1dx⇒I=0[∵log1=0]∴∫0π/2sin2xlog(tanx)dx=0