Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫π/20 log((cos x/sin x)) dx is equal to
Q.
∫
0
π
/2
lo
g
(
s
in
x
cos
x
)
d
x
is equal to
3631
234
KEAM
KEAM 2016
Integrals
Report Error
A
π
/2
B
π
/4
C
π
D
2
π
E
0
Solution:
Let
I
=
∫
0
π
/2
lo
g
(
s
i
n
x
c
o
s
x
)
d
x
=
∫
0
π
/2
lo
g
(
cot
x
)
d
x
...
(
i
)
Then,
I
=
∫
0
π
/2
lo
g
cot
(
2
π
−
x
)
d
x
[
∵
∫
a
b
f
(
x
)
d
x
=
∫
a
b
f
(
a
+
b
−
x
)
d
x
]
....
(
ii
)
=
∫
0
π
/2
lo
g
tan
x
d
x
On adding Eqs. (i) and (ii), we get
2
I
=
∫
0
π
/2
(
lo
g
cot
x
+
lo
g
tan
x
)
d
x
⇒
2
l
=
∫
0
π
/2
0
d
x
=
0
⇒
l
=
0