Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫( log x)3 x4 d x
Q.
∫
(
lo
g
x
)
3
x
4
d
x
1907
178
TS EAMCET 2018
Report Error
A
625
x
5
[
125
p
3
−
75
p
2
+
30
p
−
6
]
+
c
(where,
p
=
lo
g
x
)
B
625
x
5
[
125
p
3
−
25
p
2
+
30
p
−
5
]
+
c
(where,
p
=
lo
g
x
)
C
625
x
5
[
125
p
3
−
60
p
2
−
25
p
+
5
]
+
c
(where,
p
=
lo
g
x
)
D
125
x
5
[
625
p
3
−
75
p
2
+
30
p
+
6
]
+
c
(where,
p
=
lo
g
x
)
Solution:
Let,
I
=
∫
(
I
lo
g
x
)
3
II
x
4
d
x
=
(
lo
g
x
)
3
⋅
5
x
5
−
∫
5
x
5
⋅
3
(
lo
g
x
)
2
⋅
x
1
d
x
=
5
1
x
5
(
lo
g
x
)
3
−
5
3
[
∫
x
4
(
lo
g
x
)
2
d
x
]
=
5
1
x
5
(
lo
g
x
)
3
−
5
3
[
5
x
5
(
lo
g
x
)
2
−
∫
5
x
5
⋅
2
(
lo
g
x
)
⋅
x
1
d
x
]
=
5
1
x
5
(
lo
g
x
)
3
−
25
3
x
5
(
lo
g
x
)
2
+
25
6
∫
x
4
lo
g
x
d
x
=
5
1
x
5
(
lo
g
x
)
3
−
25
3
x
5
(
lo
g
x
)
2
+
25
6
[
5
x
5
lo
g
x
−
∫
5
x
5
⋅
x
1
d
x
]
=
5
1
x
5
(
lo
g
x
)
3
−
25
3
x
5
(
lo
g
x
)
2
+
125
6
x
5
lo
g
x
−
625
6
x
5
+
c
=
625
x
5
[
125
p
3
−
75
p
2
+
30
p
−
6
]
+
c
where,
p
=
lo
g
x