Let I=∫x3+xx3−1dx=∫(1−x3+xx+1)dx =∫1dx−∫x(x2+1)x+1dx=x−∫x(x2+1)x+1 ....(i)
Now x(x2+1)x+1=xA+x2+1Bx+C
(By using partial fractions) ⇒x+1=A(x2+1)+(Bx+C)x ⇒x+1=(A+B)x2+Cx+A
Comparing coefficients of x2,x and constant,
we get A+B=0,C=1,A=1 ⇒B=−1 ∴ From (i), we get I=x−∫x1dx−∫x2+11−xdx =x−logx−∫x2+11dx+21∫x2+12xdx =x−logx−tan−1x+21log(x2+1)+c