Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits-π/2 π /2 sin2x cos2x ( sin x+ cos x)dx is equal to
Q.
−
π
/2
∫
π
/2
sin
2
x
cos
2
x
(
sin
x
+
cos
x
)
d
x
is equal to
2469
199
Integrals
Report Error
A
15
2
18%
B
15
4
40%
C
15
6
28%
D
15
8
14%
Solution:
−
π
/2
∫
π
/2
s
i
n
2
x
co
s
2
x
(
s
in
x
+
cos
x
)
d
x
=
−
π
/2
∫
π
/2
s
i
n
3
x
co
s
2
x
d
x
+
−
π
/2
∫
π
/2
s
i
n
2
x
co
s
3
x
d
x
[
∵
s
i
n
3
x
co
s
2
x
is odd and
s
i
n
2
x
co
s
3
x
is even]
=
0
+
2
0
∫
π
/2
s
i
n
2
x
co
s
3
x
d
x
Put
s
in
x
=
z
∴
cos
x
d
x
−
d
z
∴
given integral
=
2
0
∫
1
z
2
(
1
−
z
2
)
d
z
=
2
∣
∣
3
z
3
−
5
z
5
∣
∣
0
1
=
2
(
3
1
−
5
1
)
=
15
4