Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ log √π / 2 log √π e2 x sec 2((1/3) e2 x) d x is equal to
Q.
∫
l
o
g
π
/2
l
o
g
π
e
2
x
sec
2
(
3
1
e
2
x
)
d
x
is equal to
2044
224
Integrals
Report Error
A
3
B
3
1
C
2
3
3
D
2
3
1
Solution:
<
b
r
/
>
I
=
∫
l
o
g
π
/2
l
o
g
π
e
2
x
sec
2
(
3
1
e
2
x
)
d
x
<
b
r
/
>
Put
e
2
x
=
t
⇒
2
e
2
x
d
x
=
d
t
When
x
=
lo
g
π
/2
,
t
=
e
2
l
o
g
π
/2
=
e
l
o
g
π
/2
=
2
π
When
x
=
lo
g
π
,
t
=
e
2
l
o
g
π
=
π
<
b
r
/
>
<
b
r
/
>
∴
I
=
∫
2
π
π
2
1
sec
2
(
3
1
t
)
d
t
=
2
1
⋅
3
1
1
[
tan
3
t
⋅
]
π
/2
π
<
b
r
/
>=
2
3
[
tan
3
π
−
tan
6
π
]
=
2
3
[
3
−
3
1
]
=
3
<
b
r
/
>
<
b
r
/
>