Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits1∞ ( ln (x-1) d x/x2 ln x ⋅ ln ((x)x-1)) is equal to -
Q.
1
∫
∞
x
2
l
n
x
⋅
l
n
(
x
−
1
x
)
l
n
(
x
−
1
)
d
x
is equal to -
58
156
Integrals
Report Error
Answer:
0
Solution:
Put
x
=
t
1
⇒
d
x
=
−
t
2
1
d
t
Given integral
I
=
0
∫
1
l
n
t
⋅
l
n
(
1
−
t
)
l
n
(
t
1
−
1
)
d
t
=
0
∫
1
(
l
n
t
1
−
l
n
(
1
−
t
)
1
)
d
t
=
0
∫
1
l
n
t
d
t
−
0
∫
1
l
n
(
1
−
t
)
d
t
=
0
∫
1
l
n
(
1
−
t
)
d
t
−
0
∫
1
l
n
(
1
−
t
)
d
t
=
0