Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits0(π/2) ( sin n θ/ sin n θ+ cos n θ) d θ is equal to
Q.
0
∫
2
π
s
i
n
n
θ
+
c
o
s
n
θ
s
i
n
n
θ
d
θ
is equal to
84
164
Manipal
Manipal 2018
Report Error
A
1
B
0
C
2
π
D
4
π
Solution:
Let
I
=
0
∫
2
π
s
i
n
n
θ
+
c
o
s
n
θ
s
i
n
n
θ
d
θ
=
0
∫
2
π
s
i
n
n
(
2
π
−
θ
)
+
c
o
s
n
(
2
π
−
θ
)
s
i
n
n
(
2
π
−
θ
)
d
θ
=
0
∫
2
π
c
o
s
n
θ
+
s
i
n
n
θ
c
o
s
n
θ
d
θ
…
(
ii
)
On adding Eqs. (i) and (ii), we get
2
I
=
0
∫
2
π
c
o
s
n
θ
+
s
i
n
n
θ
s
i
n
n
θ
+
c
o
s
n
θ
d
θ
=
0
∫
π
/2
d
θ
=
2
π
⇒
I
=
4
π