Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits0π / 2 ( sin 3 x/( cos 4 x+3 cos 2 x+1) tan -1( sec x+ cos x)) d x is equal to
Q.
0
∫
π
/2
(
c
o
s
4
x
+
3
c
o
s
2
x
+
1
)
t
a
n
−
1
(
s
e
c
x
+
c
o
s
x
)
s
i
n
3
x
d
x
is equal to
70
64
Integrals
Report Error
A
2
π
−
tan
−
1
2
B
ln
2
π
−
ln
(
tan
−
1
2
)
C
ln
(
tan
−
1
2
)
D
ln
2
π
Solution:
0
∫
π
/2
(
c
o
s
4
x
+
3
c
o
s
2
x
+
1
)
t
a
n
−
1
(
s
e
c
x
+
c
o
s
x
)
s
i
n
3
x
d
x
Put
sec
x
+
cos
x
=
t
⇒
(
sec
x
tan
x
−
sin
x
)
d
x
=
d
t
⇒
sin
x
c
o
s
2
x
s
i
n
2
x
d
x
=
d
t
⇒
sin
3
x
d
x
=
cos
2
x
d
t
I
=
2
∫
∞
(
c
o
s
2
x
+
s
e
c
2
x
+
3
)
t
a
n
−
1
t
d
t
=
2
∫
∞
(
t
2
+
1
)
t
a
n
−
1
t
d
t
;
Put
tan
−
1
t
=
z
I
=
ln
z
]
t
a
n
−
1
2
2
π
=
ln
2
π
−
ln
(
tan
−
1
2
)
.