Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits0π/2 ((√[n]sec x/√[n]sec x +√[n]cosec x)) dx=
Q.
0
∫
π
/2
(
n
sec
x
+
n
cosec
x
n
sec
x
)
d
x
=
1623
196
MHT CET
MHT CET 2016
Integrals
Report Error
A
π
/2
16%
B
π
/3
10%
C
π
/4
70%
D
π
/6
4%
Solution:
Let
I
=
0
∫
2
π
n
s
e
c
x
+
n
cosec
x
n
s
e
c
x
d
x
…
(
i
)
=
0
∫
2
π
n
s
e
c
(
2
π
−
x
)
+
n
cosec
(
2
π
−
x
)
n
s
e
c
(
2
π
−
x
)
d
x
=
0
∫
2
π
n
cosec
x
+
n
s
e
c
x
n
cosec
x
d
x
…
(
ii
)
On adding Eq. (i) and (ii), we get
2
l
=
0
∫
2
π
n
s
e
c
x
+
n
cosec
x
n
s
e
c
x
+
n
cosec
x
d
x
⇒
2
I
=
0
∫
2
π
d
x
=
[
x
]
0
π
/2
⇒
2
I
=
2
π
⇒
I
=
4
π