Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits0 log 5(ex√ex-1/ex+3)dx=
Q.
0
∫
l
o
g
5
e
x
+
3
e
x
e
x
−
1
d
x
=
2839
227
Integrals
Report Error
A
3
+
2
π
5%
B
4
−
π
65%
C
2
+
π
15%
D
4
+
π
15%
Solution:
Put
e
x
−
1
=
r
2
∴
e
x
d
x
=
2
t
d
t
when
x
=
0
,
t
=
0
when
x
=
l
o
g
5
,
r
2
=
e
l
o
g
5
−
1
=
5
−
1
=
4
∴
t
=
2
∴
given
in
t
e
g
r
a
l
=
∫
l
imi
t
s
0
2
t
2
+
1
+
3
t
⋅
2
t
d
t
=
0
∫
2
t
2
+
4
2
t
2
d
t
=
2
0
∫
2
t
2
+
4
t
2
+
4
−
4
d
t
=
2
0
∫
2
d
t
−
8
0
∫
2
t
2
+
4
d
t
=
2
∣
t
∣
0
2
−
2
8
∣
∣
t
a
n
−
1
2
t
∣
∣
0
2
=
4
−
4
[
t
a
n
−
1
1
−
t
a
n
−
1
0
]
=
4
−
4
4
π
=
4
−
π